Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels.

نویسندگان

  • H Schweitz
  • T Bruhn
  • E Guillemare
  • D Moinier
  • J M Lancelin
  • L Béress
  • M Lazdunski
چکیده

New peptides have been isolated from the sea anemone Anemonia sulcata which inhibit competitively the binding of 125I-dendrotoxin I (a classical ligand for K+ channel) to rat brain membranes and behave as blockers of voltage-sensitive K+ channels. Sea anemone kalicludines are 58-59-amino acid peptides cross-linked with three disulfide bridges. They are structurally homologous both to dendrotoxins which are snake venom toxins and to the basic pancreatic trypsin inhibitor (Kunitz inhibitor) and have the unique property of expressing both the function of dendrotoxins in blocking voltage-sensitive K+ channels and the function of the Kunitz inhibitor in inhibiting trypsin. Kaliseptine is another structural class of peptide comprising 36 amino acids with no sequence homology with kalicludines or with dendrotoxins. In spite of this structural difference, it binds to the same receptor site as dendrotoxin and kalicludines and is as efficient as a K+ channel inhibitor as the most potent kalicludine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells

Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...

متن کامل

A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons.

From a systematic screening of animal venoms, we isolated a new toxin (APETx2) from the sea anemone Anthopleura elegantissima, which inhibits ASIC3 homomeric channels and ASIC3-containing heteromeric channels both in heterologous expression systems and in primary cultures of rat sensory neurons. APETx2 is a 42 amino-acid peptide crosslinked by three disulfide bridges, with a structural organiza...

متن کامل

Biochemical and Electrophysiological Characterization of Two Sea Anemone Type 1 Potassium Toxins from a Geographically Distant Population of Bunodosoma caissarum

Sea anemone (Cnidaria, Anthozoa) venom is an important source of bioactive compounds used as tools to study the pharmacology and structure-function of voltage-gated K+ channels (KV). These neurotoxins can be divided into four different types, according to their structure and mode of action. In this work, for the first time, two toxins were purified from the venom of Bunodosoma caissarum populat...

متن کامل

The sea anemone toxins BgII and BgIII prolong the inactivation time course of the tetrodotoxin-sensitive sodium current in rat dorsal root ganglion neurons.

We have characterized the effects of BgII and BgIII, two sea anemone peptides with almost identical sequences (they only differ by a single amino acid), on neuronal sodium currents using the whole-cell patch-clamp technique. Neurons of dorsal root ganglia of Wistar rats (P5-9) in primary culture (Leibovitz's L15 medium; 37 degrees C, 95% air/5% CO2) were used for this study (n = 154). These cel...

متن کامل

Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels.

Sea anemones produce a myriad of toxic peptides and proteins of which a large group acts on voltage-gated Na+ channels. However, in comparison to other organisms, their venoms and toxins are poorly studied. Most of the known voltage-gated Na+ channel toxins isolated from sea anemone venoms act on neurotoxin receptor site 3 and inhibit the inactivation of these channels. Furthermore, it seems th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 270 42  شماره 

صفحات  -

تاریخ انتشار 1995